title>SY/T 5243-1991 Evaluation procedure for viscosity reducers for water-based drilling fluids - SY/T 5243-1991 - Chinese standardNet - bzxz.net
Home > SY > SY/T 5243-1991 Evaluation procedure for viscosity reducers for water-based drilling fluids
SY/T 5243-1991 Evaluation procedure for viscosity reducers for water-based drilling fluids

Basic Information

Standard ID: SY/T 5243-1991

Standard Name: Evaluation procedure for viscosity reducers for water-based drilling fluids

Chinese Name: 水基钻井液用降粘剂评价程序

Standard category:Oil and gas industry standards (SY)

state:in force

Date of Release1991-07-19

Date of Implementation:1991-11-01

standard classification number

Standard Classification Number:Petroleum>>Petroleum Exploration, Development and Gathering>>E13 Oil Drilling

associated standards

Publication information

other information

Introduction to standards:

SY/T 5243-1991 Evaluation Procedure for Viscosity Reducers for Water-Based Drilling FluidsSY/T5243-1991 Standard Download Decompression Password: www.bzxz.net

Some standard content:

SY/T 5243-91, Petroleum and Natural Gas Industry Standard of the People's Republic of China
Evaluation Procedure of Viscosity Reducing Agents for Water-Based Drilling Fluids
Published on July 19, 1991
Ministry of Energy of the People's Republic of China
Implementation on November 1, 1991
1. Subject Content and Scope of Application
Evaluation Procedure of Viscosity Reducing Agents for Water-Based Drilling Fluids for Petroleum and Natural Gas Industry Standard of the People's Republic of China
SY/T 524391
This standard specifies the evaluation procedure of the viscosity reducing ability of viscosity reducing agents for water-based drilling fluids in weighted and non-weighted drilling fluids of fresh water, salt water, saturated salt water.
This standard is applicable to the evaluation of the viscosity reducing ability of viscosity reducing agents for water-based drilling fluids such as wood turbidity, humic acid, tannin, and gum. 2 Reference standards:
Drilling fluid test procedure
ZB/TE 130044
SY5060
3 Instruments and materials
3.1 Instruments
Bentonite for drilling fluid
. High-speed agitator: load speed is 11000±300r/min; the agitator shaft is equipped with a single corrugated blade, the blade diameter is 2.5cm and the mass is 5.9g; with a sample cup, the cup height is 18cm, the upper end diameter is 9.7cm, the lower end diameter is 7.Ccm, made of stainless steel or corrosion-resistant material:
h. Direct-reading viscometer: Fann35s or similar products: c. Balance: sensitivity 0.01g,
d. Timer: sensitivity 0.1s
e. Roller heating furnace and curing tank:
l. Density scale: sensitivity is 0.01g/cm;
g Thermometer: 0~100℃.
3.2 Materials
a- Bentonite: conform to the first-grade bentonite in SY.5060 standard b. Evaluation soil: OCMA evaluation soil or similar products, c. Sodium hydroxide: chemically pure;
d. Sodium chloride: table salt or chemically pure;
e. Defoamer: n-octanol.
4 Viscosity reduction ability evaluation procedure
4.1 Preparation of base slurry
4.1.1 Add a certain amount of bentonite and evaluation soil to the sample cups containing 350ml distilled water, 4% brine and saturated brine respectively (the amount of soil is shown in Table 1).
4.1.2 Stir for 20 minutes on a high-speed stirrer (interrupt twice to scrape off the adherents on the wall). If it is not within the range of the required slurry in Table 1, the amount of bentonite and the evaluator can be adjusted appropriately. Approved by the Ministry of Energy of the People's Republic of China on July 19, 1991 and implemented on November 1, 1991
Freshwater base slurry
4% salt water base slurry
Blast and salt water base slurry
Freshwater weighted base slurry
4% salt water weighted base slurry
SY/T 5243—91
7% bentonite + 18% evaluation soil
7% bentonite + 25% evaluation soil
7% bentonite + 20% evaluation soil
6% bentonite + 15% evaluation soil + 60% barite 6% bentonite + 20% evaluation soil + 50% barite 6% bentonite + 18% evaluation soil + 36% barite and salt water weighted base slurry
4.1.3 Take the aged base slurry, stir it on a high-speed stirrer for 5 minutes, take it out immediately and measure the viscometer reading at 600, 300, 100r/min and the static shear force at 10s and 10min according to the procedure specified in ZB/TE130043.2.2. 4.1.4 The density of the weighted base slurry should be within the range of 1.5±0.03g/cm. 4.1.5 The viscometer reading of the base slurry at 100r/min should be kept within the range of 50±10. If it is not within the required range, the amount of bentonite and evaluation soil added can be appropriately adjusted. The density of the prepared weighted base slurry should be within the range of 1.5±0.03g/cm. 4.2 Evaluation of viscosity reduction ability in fresh water base slurry
4.2.1 Room temperature evaluation
4.2-1.1 Prepare 5 portions of fresh water base slurry according to the procedure in 4.1. 4.2.1.2 Take one portion as a blank sample and test it according to 4.1.3. 4.2.1.3 In the other 4 portions of base slurry, refer to Appendix D (reference) and add different amounts of viscosity reducer. 8. For acidic treatment agents, first use 20% sodium hydroxide solution to adjust the pH value of the base slurry to the optimal pH value range for the treatment agent. Then add the viscosity reducer gradually to the required amount, with the amount of viscosity reducer added each time not exceeding 0.5% of the base slurry. Each time a viscosity reducer is added, the pH value of the slurry should be adjusted to the optimal range:
b. For alkaline treatment agents, the required viscosity reducer can be added once and the pH value of the slurry should be adjusted to the optimal range. 4.2.1.4 The sample slurry is stirred on a high-speed stirrer for 20 minutes (interrupted twice to scrape off the adhesion on the wall of the device). 4.2.15 According to the procedure specified in Article 3.2.2 of ZB/TE13004, the readings at 600, 300, and 100r/min and the static shear force at 10s and 10min are measured.
4.2.1.6 Select the same type of treatment agent as a reference sample and repeat the steps of 4.2.1.1~HT. 4.2.2 Thermal stability test
4.2.2.1 According to the temperature resistance of various treatment agents, select one of the following temperatures (70, 150, 180, 200℃) to conduct a thermal stability test.
4.2.2.2 Follow 4.2.1.1~4.2.1.4. 4.2.2.3 Place the base slurry into the curing tank and close the valve stem to make it airtight. When the hot rolling temperature exceeds 100℃, it should be inflated before sealing.
4.2.2.4 Hot roll at the selected temperature for 16 hours. 4.2.2.5 Take out the curing tank, loosen the valve stem (air should be ejected at this time, otherwise it should be redone) and close it immediately, and cool to room temperature. 4.2.2.6 Pour the slurry in the curing tank into the sample cup, stir at high temperature for 10 minutes, and adjust its pH value to the value before hot rolling with 20% sodium hydroxide solution.
4.2.2.7 Test according to 4.2.1.5. 4.3 Evaluation of viscosity reduction ability in other base slurries
Depending on the specific situation, other base slurries can be used instead of freshwater base slurries, and the procedure in 4.2 can be followed. 2
4.4 Anti-calcium pollution experiment
SY/T5243-91
4.4.1 According to the use requirements, select calcium ion concentrations of 300-500, 700, and 3000 mg/L for anti-calcium pollution experiment 4. 4. 2
Select the required base slurry type and proceed according to 4.2.1.1~4.2.1.4. 4.4.3 Add calcium nitride equivalent to the calcium ion concentration selected in 4.4.1 and stir for 10 minutes. 4.4.4 Test according to 4.2.1.5.
Data processing
Fill the measured data into Table 2.
Amount added, %
Reference sample
Maximum pH value:
Reference sample
Reference sample
Reference sample
Reference sample
Note: (0un, da* refers to the viscometer reading at 600, 300, 100r/min. 1) 1G is the initial shear force;
2) FG is the final shear force.
5.2 The format of the viscosity reducer evaluation report is shown in Appendix A (Supplementary) 5.3 The PC-1500 computer program for evaluating viscosity reducers is shown in Appendix B (Supplementary) 5.4 Examples of using computer programs to process data are shown in Appendix C (Reference). 5.5 The amount of viscosity reducer is shown in Appendix D (reference), test sample:
reference sample,
sample name:
manufacturer:
sampling date:
SY/T 5243-91
Appendix A
Viscosity reducer evaluation report format
(supplement)
Viscosity reducer evaluation report
Sample number:
Sample collection date:
Sample taker,
Evaluation results
Commissioning unit:
Evaluation date:
Report number:
Appraiser:
Date:
Reviewer:
Date:
Evaluation unit: (stamp)
5: \A\+ CLEAR:
WAIT 0: CLS
8. WAIT 64 * 3.
PRINT \You ale
welcome!\
10: INPUT \TYPE OF
BASED MUD?\+ A
12: ONAG0TO 15, 20,25, 30, 35, 4015: P$ = \FWM\.
GOTO 45
20: P$ - *s. w.M.\.
GOTO 45
25. f$- \S.5.M.\
GOTO45
30: P$ - *W.FWM. \.
GOTO 45
35: P$ = *W.SWM.\.
GOTO45
40. P$ - \w.sSM. \
45, INPUT \Nus.OF EXP.?\, P47: INPUT \IEMP.IN EXP.?\↓ D50: INPUT \PH1 IN EXP. ?\, B52:INPUT“PH2INEXP.?\,C
55: INPUT \Ca IN EXP. ?\; ESY/T 524391
附录B
评价降粘剂的计算机程序
(补充件)
$ (I) + \) -\: PRINT D$:
INPUT F1 (J, 1)
105, CLS, E$ =- \IG (\ +STR$ () + \,\ +STR$ (I) + “) -\, PRINTE$+:
INPUT IG (J, )
IIO: CLS. F$= \FG (\ +STR$ () + “,\ +STR$ (I) +\)-\ PRINT F$\:
INPUT FG (J. I)
115,CIS:INPUT“CHECKOUT?\,K$120: IF ASC K $ -78
GOTO 155
125, WAIT 64 * 3.
PRINT A$+ G , I)
130, WAIT 64 * 3;
PRINT B$+F6 (, I)
132: WAIT 64 # 3
PRINT C$ + F3 (J, I)
135, WAIT 64 * 3:
PRINT DS, F1 U, I)
13B, WAIT 64* 3.
PRINT E$, IG (, I)
140: WAIT 64* 3:
PRINTF$,FG U,I)
145: INPUT \Is The Right?\, K $60: DIM X (3), Y (3), G (2, P), F6 (2, P), F3(2, P), FI (2, P), IG (2, P), FG (2, P), T(2)
65+ DIM F$ (2, 3), G$ (2, 3), Q (2), R (2, 70)68: DIMH (2, 3), N (2, 3), M (2, 3)70: DIM S (2), AV (2, P), YP (2. P), 0 (2), V(2)
75: FOR J--1TO 2
80: FORI-0TO P 1bZxz.net
85, WAIT 0: CLS. A$ = \X (\ +STR$ U) + \,\*) -\, PRINT A$ I: INPUTG
+STR$ (I) -
90: C1.S: H$ = \F600 (\ +STR$ U) + *,\ +STR$(I)+*)-\:PRINTB$.:
INPUT F6 (J, I)
95: CLS. C$ = \F300 (\ +STR$ () + *,\ +STR$(I)+\)=\PRINTC$,:
INPUT F3 (, I)
100: CLS: D$ = \F100 (\+STR$ () + \,\ +STR150:JFASCK$=78GOTO85
155: NEXT I: NEXT J
160: WAIT 2: PRINT \WAIT MOMENT FL EASE!\165: FOR K--1TO 2
170: FOR N-0TO P--3
175: IF N=P-3G0TO 185
180, FOR I=G (K, N) /.05TOG (K, N+1) /.051: GOTO 190
185. FOR 1-G (K, N) /.05TO G (K, N+2) /.05190, Y (0) -F1 (K, N): Y (1) -F1 (K, N+1). Y(2) -F1 (K, N+2)
195: GOSUB 640
200,R(K,1)=100*(F1(K,0)-W)/F1(K,0)
202:NEXTI:NEXTN;NEXTK
205:“B\,FORK=1TO2
210,FORN-OTOP--3
215:IFN=P-3GOTO225
220:FORI-0TOG(K,N+1)7.05:GOTO2305
SY/T 5243--91
225 : FOR 1=-G (K, N) /. 05TO G(K,N+2)/. 05: GOT()280
230:Y(0)-F6(K,N),Y(1)-F6 (K,N+1); Y(2)=F6 (K, N+2)
232.GOSUB600
235.V(K)=W/2
240: Y (0) =F3 (K, N): Y (1) -F3 (K, N+1): Y(2) -F3 (K, N+2)
245: GOSUB 600
250; u-w
255: Y <0) =IGINPUT“CHECKOUT?\,K$120: IF ASC K $ -78
GOTO 155
125, WAIT 64 * 3.
PRINT A$+ G , I)
130, WAIT 64 * 3;
PRINT B$+F6 (, I)
132: WAIT 64 # 3
PRINT C$ + F3 (J, I)
135, WAIT 64 * 3:
PRINT DS, F1 U, I)
13B, WAIT 64* 3.
PRINT E$, IG (, I)
140: WAIT 64* 3:
PRINTF$,FG U,I)
145: INPUT \Is The Right?\, K $60: DIM X (3), Y (3), G (2, P), F6 (2, P), F3(2, P), FI (2, P), IG (2, P), FG (2, P), T(2)
65+ DIM F$ (2, 3), G$ (2, 3), Q (2), R (2, 70)68: DIMH (2, 3), N (2, 3), M (2, 3)70: DIM S (2), AV (2, P), YP (2. P), 0 (2), V(2)
75: FOR J--1TO 2
80: FORI-0TO P 1
85, WAIT 0: CLS. A$ = \X (\ +STR$ U) + \,\*) -\, PRINT A$ I: INPUTG
+STR$ (I) -
90: C1.S: H$ = \F600 (\ +STR$ U) + *,\ +STR$(I)+*)-\:PRINTB$.:
INPUT F6 (J, I)
95: CLS. C$ = \F300 (\ +STR$ () + *,\ +STR$(I)+\)=\PRINTC$,:
INPUT F3 (, I)
100: CLS: D$ = \F100 (\+STR$ () + \,\ +STR150:JFASCK$=78GOTO85
155: NEXT I: NEXT J
160: WAIT 2: PRINT \WAIT MOMENT FL EASE!\165: FOR K--1TO 2
170: FOR N-0TO P--3
175: IF N=P-3G0TO 185
180, FOR I=G (K, N) /.05TOG (K, N+1) /.051: GOTO 190
185. FOR 1-G (K, N) /.05TO G (K, N+2) /.05190, Y (0) -F1 (K, N): Y (1) -F1 (K, N+1). Y(2) -F1 (K, N+2)
195: GOSUB 640
200,R(K,1)=100*(F1(K,0)-W)/F1(K,0)
202:NEXTI:NEXTN;NEXTK
205:“B\,FORK=1TO2
210,FORN-OTOP--3
215:IFN=P-3GOTO225
220:FORI-0TOG(K,N+1)7.05:GOTO2305
SY/T 5243--91
225 : FOR 1=-G (K, N) /. 05TO G(K,N+2)/. 05: GOT()280
230:Y(0)-F6(K,N),Y(1)-F6 (K,N+1); Y(2)=F6 (K, N+2)
232.GOSUB600
235.V(K)=W/2
240: Y (0) =F3 (K, N): Y (1) -F3 (K, N+1): Y(2) -F3 (K, N+2)
245: GOSUB 600
250; u-w
255: Y <0) =IGINPUT“CHECKOUT?\,K$120: IF ASC K $ -78
GOTO 155
125, WAIT 64 * 3.
PRINT A$+ G , I)
130, WAIT 64 * 3;
PRINT B$+F6 (, I)
132: WAIT 64 # 3
PRINT C$ + F3 (J, I)
135, WAIT 64 * 3:
PRINT DS, F1 U, I)
13B, WAIT 64* 3.
PRINT E$, IG (, I)
140: WAIT 64* 3:
PRINTF$,FG U,I)
145: INPUT \Is The Right?\, K $60: DIM X (3), Y (3), G (2, P), F6 (2, P), F3(2, P), FI (2, P), IG (2, P), FG (2, P), T(2)
65+ DIM F$ (2, 3), G$ (2, 3), Q (2), R (2, 70)68: DIMH (2, 3), N (2, 3), M (2, 3)70: DIM S (2), AV (2, P), YP (2. P), 0 (2), V(2)
75: FOR J--1TO 2
80: FORI-0TO P 1
85, WAIT 0: CLS. A$ = \X (\ +STR$ U) + \,\*) -\, PRINT A$ I: INPUTG
+STR$ (I) -
90: C1.S: H$ = \F600 (\ +STR$ U) + *,\ +STR$(I)+*)-\:PRINTB$.:
INPUT F6 (J, I)
95: CLS. C$ = \F300 (\ +STR$ () + *,\ +STR$(I)+\)=\PRINTC$,:
INPUT F3 (, I)
100: CLS: D$ = \F100 (\+STR$ () + \,\ +STR150:JFASCK$=78GOTO85
155: NEXT I: NEXT J
160: WAIT 2: PRINT \WAIT MOMENT FL EASE!\165: FOR K--1TO 2
170: FOR N-0TO P--3
175: IF N=P-3G0TO 185
180, FOR I=G (K, N) /.05TOG (K, N+1) /.051: GOTO 190
185. FOR 1-G (K, N) /.05TO G (K, N+2) /.05190, Y (0) -F1 (K, N): Y (1) -F1 (K, N+1). Y(2) -F1 (K, N+2)
195: GOSUB 640
200,R(K,1)=100*(F1(K,0)-W)/F1(K,0)
202:NEXTI:NEXTN;NEXTK
205:“B\,FORK=1TO2
210,FORN-OTOP--3
215:IFN=P-3GOTO225
220:FORI-0TOG(K,N+1)7.05:GOTO2305
SY/T 5243--91
225 : FOR 1=-G (K, N) /. 05TO G(K,N+2)/. 05: GOT()280
230:Y(0)-F6(K,N),Y(1)-F6 (K,N+1); Y(2)=F6 (K, N+2)
232.GOSUB600
235.V(K)=W/2
240: Y (0) =F3 (K, N): Y (1) -F3 (K, N+1): Y(2) -F3 (K, N+2)
245: GOSUB 600
250; u-w
255: Y <0) =IGY(1)-F1(K,N+1). Y(2) -F1 (K, N+2)
195: GOSUB 640
200,R(K, 1)=100*(F1(K, 0)-W)/F1(K, 0)
202:NEXTI:NEXTN;NEXTK
205:“B\,FORK=1TO2
210,FORN-OTOP--3
215:IFN=P-3GOTO225
220:FORI-0TOG(K, N+1)7.05:GOTO2305
SY/T 5243--91
225 : FOR 1=-G (K, N) /.05TO G(K, N+2)/.05: GOT()280
230:Y(0)-F6(K,N),Y(1)-F6 (K,N+1); Y(2)=F6 (K, N+2)
232. GOSUB600
235. V(K)=W/2
240: Y (0) =F3 (K, N): Y (1) -F3 (K, N+1): Y(2) -F3 (K, N+2)
245: GOSUB600
250; uw
255: Y <0) =IGY(1)-F1(K,N+1). Y(2) -F1 (K, N+2)
195: GOSUB 640
200,R(K, 1)=100*(F1(K, 0)-W)/F1(K, 0)
202:NEXTI:NEXTN;NEXTK
205:“B\,FORK=1TO2
210,FORN-OTOP--3
215:IFN=P-3GOTO225
220:FORI-0TOG(K, N+1)7.05:GOTO2305
SY/T 5243--91
225 : FOR 1=-G (K, N) /.05TO G(K, N+2)/.05: GOT()280
230:Y(0)-F6(K,N),Y(1)-F6 (K,N+1); Y(2)=F6 (K, N+2)
232. GOSUB600
235. V(K)=W/2
240: Y (0) =F3 (K, N): Y (1) -F3 (K, N+1): Y(2) -F3 (K, N+2)
245: GOSUB600
250; uw
255: Y <0) =IG
Tip: This standard content only shows part of the intercepted content of the complete standard. If you need the complete standard, please go to the top to download the complete standard document for free.