标准内容
GB 12326—2000
本标准是电能质量系列标准之一,目前已制定颂布的电能质量系列国家标准有:供电电压允许偏差\(GB12325—-1990):电压允许波动和闪变\(GB12326—1990):公用电网谱波\(GB/T14549—1993):三相电压充许不平衡度$(GB/T15543一1995)和电力系统赖率充许偏差$(GB/T15945-1995.
本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB12326—1990进行了全面的惨订。和GB12326一1990相比,这饮修订的主要内容有1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原删:
2)将国标中闪变指标由引用日本△Vi改为 IEC的短时间闪变 Pt和长时间闪变 Pr指标,以和国际标准接轨,并符合中国国情
3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响:
4)将原标准中以电压波(变)动为主,改为以闪变值为主原标准中△V均为推荐值),以和国际标推相对应:
5)对丁单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行:6)引人了闪变叠加、传递等计算公式,高压系统中供电穿量的确定方法以及电压变动的计算和闪变的评估等内夺,并给出一些典型的实例分析;7)对 IEC 61000-4-15 规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一;8)整个标准按国标GB/T 1.1 和GB/T 1.2 有关规定作编写。原标准名称的引导要素电能质量\英译为“Powerqualityofelectricenergygupply\改为国际上通用的\Powerquality”,并将本标雅名称改为电能质量电压波动和闪变》。作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上.删去对概志和原理的解释部分,因为国内将陆续发布等同于 IEC 61000 的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语.以放相关闪变测且仪规范和闪变(P)的表达式等,主要参考了IEC61000-3-3,IEC61000-4-15。须指出,在采用IEC61000相关内容中,本标准对于下列几点作了修改:1)按 IEC 标准,对闪变Psl,Pi指标,每饮评定测量时间至少为一个星期,取 99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对闪变指标规定取 1 天(24 h)测量,而且取 95%概率大值衡量;对户,指标,原则上规定不得超标。2)对于电压变动,除了按变动频度范围给出限值外,还补充了随机性不规则的电压变动的限值以及测量和取值方法,
3)在IEC标准中,除了电磁兼容值外还引人“规划值”,规划值原则上不大于兼穿值,是由电力部门根据负荷和电阿结构等特点自行规定的目标值,本标推不采用“兼容值”或“规划值”,一律用“限值”概念。
4)IEC61000-3-7实际上只对中,高压波动负荷的兼容限值作了规定,对于低压,主要是控制单台GB12326--2000
设备的限值,已由IEC 61000-3-3和IEC 61000-3-5中作了规定。(国内将有等同标准),在制定本标准时,鉴于中、低压设备兼容值相同(见IEC6100U-3-7),而国产低压电气设备大多未按IEC标准检验其电压被动和闪变指标,故将低压也作了规定,以使标准较为完整。本标准从实施之日起,代替GB12326—1990。本标准的附录A、附录 B都是标准的附录。本标准的附录C、附录D都是提示的附录。本标准由国家经贸委电力司提出。本标准由全国电压电流等级和频率标准化技术委员会归口。本标准起草单位:国家电力公司电力科学研究院、清华大学,北京供电局、北京钢铁设计研究总院、机械科学研究院。
本标准主要起草人:林海雪,孙树勤、赵刚、陈斌发、王敬义,李世林。1范围
中华人民共和国国家标准
电能质
电压波动和闪变
Power guality -Voltage fluctuatlon and flicker本标准规定了电压波动和闪变的限值及测试,计算和评估方法。GB12326—2000
代替GB12326—1990
本标准适用于交流50Hz电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯闪明显能的场合,2引用标准
GR156--1993标准电压
3定义
本标准采用以下定义,
3.1 公共连接点 point of conmon coupling(PCC)电力系统中一个以上用户的连接处。3.2波动负荷fluctuetingload
生产(或运行)过程中从供电网中取用快速变动功率的负荷。例如:炼钢电弧炉、轧机、电弧焊机等。3.3电压方均根值曲线U(t)R.M.S.voltage shape,U(t)每半个基波电压周期方均根值(r. tm. s.)的时间函数。3.4电压变动特性d(t)relative voltage change characteristic,d(t)电压方均根值变动的时间函数,以系统标称电压的百分数表示。3. 5 电压变动d relative voltage change,d电压变动特性d(t)上,相邻两个极值电压之差。3.6电压变动频度 rate of occurrencc of voltage changes单位时间内电压变动的谈数(电压由大到小或由小到大各算一次变动)。同一方向的若十次变动,如间隔时向小于 30 ms,则算一次变动。3.7闪变时间 t flicker time,t一个有时间量纲的值,表示电压变动的闪变影响,和波形、幅值以及频度均有关。3.8电压波动 voltage fluctuation电压方均根值一系列的变动或连续的改变。3.9 闪变 flicker
灯光照度不稳定造成的视感。
3.10闪变仪flicermeter
一种测量闪变的专用仪器(见附录A)。注i一般测量 P和 Pr
国末质量技术监督局 2000 -04 -03 批准2000 - 12 - 01 实施
GB12326—2000
3. 11短时间闪变值 Pshort term Beverity,P,衡量短时间(若于分钟)内闪变强弱的一个统计量值(见附录A)。P=1为闪变引起视感刺激性的通常限值。
3.2长时间闪变值Pulongtermseverity,Pl由短时间闪变值P.推算出,反映长时间(若干小时)闪变强弱的量值(见附录A)。3. 13累积概率函数 cumulative probability functian(CPF)其横坐标表示被测量值(例如瞬时闪变值),纵坐标表示超过对应横坐标值的时间占整个测量时间的百分数(见图A2)。
4电压变动和闪变的限值
4.1电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度,电压等级有关,见表1。表1电压变动限值
10≤100
1001000
LV、MV
1很少的变动频度(每日少于1次),电压变动限值d还可以放宽,但不在本标准中规定。2对于随机性不规则的电压波动,依 95%概率大值衡盘,表中标有”*”的值为其限值。3本标准中系统标称电压U等级按以下划分:低压(LV)
中压(MV)
高压(HV)
Uyslky
1 kv35 kyuns220 ky
4.2电力系统公共连接点,由波动负荷引起的短时间闪变值P.和长时间闪变值Pit应满足表2所列的限值。
系统电压等级
各级电压下的闪变限值
本标准中P.和Pi,每次测量周期分别取为10 min和2 h(下同)。2MV括号中的仅适用于PCC连接的所有用户为同电压级的用户场合。HV
4.3任何一个波动负荷用户在电力系统公共连接点单独引起的电压变动和闪变值一般应满足下列要求。
4. 3. 1 电压变动的限值如表 1 所列。4.3.2闪变限值根据用户负荷大小、其协议用电容量占供电容量的比例、以及系统电压,分别按三级作不同的规定和处理
4.3.2.1第一级规定。满足本级规定,可以不经闪变核算,允许接人电网。a)对于 LV 和MV 用户,第一级限值见表 3。往
remn-1
1075200
GB 12326—2000
表 3 LV 和 MV 用户第一级限值表中△S 为波动负荷视在功率的变动;S.,为 PLC短路穿量。k=(AS/S-)-,%
已通过 1EC 61000-3-3 和 IEC 61000-3-5 的 LV 设备均视为满足第—级规定2
b)对于HV 用户,满足(△S/S.)max≤0. 1%。4. 3. 2.2第二级规定。须根据用户闪变的发生值和限值作比较后确定。每个用户按其协设用电容量 S.(S,一P,/cosg,)和供电容量 S 之比,考患上一级对下一级闪变传递的影响(下·级对上一级的传递一般忽略)等因素后确定闪变限值。不同电压等级之间闪变传遵系数了姐表4所列。
表4不同电压等级间闪变传递系数HV-MV
-·般取债
用户闪变限值的计算如下:
0. 8~1. 0
0. 951. 0
a)对于 MV和 LV单个用户,首先求出接于PCC的全部负荷产生闪变的总限值G:(以MV 用片为例写公式)
Gy = Lav- ThmZAy
式中:Lmv和LHv分别为MV 和HV 的闪变限值(见表2)。TrM为 HV 对 MV 的闪变传递系数(见表 4)。则单个用户闪变限值 E为:
Emy=GsyNS
式中:Fm为被动负荷的同时系数,其典型值FmV=0.2~0.3但必须满足S./Fm≤Smv)。式(1)、(2)中,如将下标作适当替换(例如 MV 换为 LV,TH换为Tm.或 TM等)则可以用于 LV 用户的计算。式(1)、(2)对于短时间闪变(P.)和长时间闪变(Pu)均适用。b)对于HV 单个用户,闪变限值计算式为rs
Eav = IawNSy
式中:Sav为接S,的PCC总供电容量,确定方法见附录B。(3
c)对于某些相对较小的用户,利用式(2),(3)求出的闪变限值可能过严,如用户未超过表5规定的基本闪变值,则仍允许接网,
表 5基本闪变值
第二级规定了超标(超过第二级限值)用户和过高背景闪变水平的处理原则。4. 3. 2. 3
GB 12326—2000
由于PCC上并不都是波动负荷,按第二级条件计算,某些用户若是超标的,但实际背景闪变水平比较低,或者超标的概率很低(例如每周不超过1%时间),电力企业可以的情(包括考虑近期的发展)放宽限值。反之,如背景水平已接近于表2规定值,则应适当碱少分配的指标,研究采用补偿设备的可能性,并应分析背景水平高的原因,采取必要的降低闪内变水平猎施。5电压变动和闪变的测量条件、取值5.1本标准电压变动值、短时间闪变值P.和长时间内变值指的是电力系统正常运行的较小方式下,被动负荷变化最大工作周期的实测值。例如:炼钢电弧炉应在熔化期测量;轧机应在最大轧制负荷周期测量;三相负荷不平衡时应在三相测量值中取最严重的一-相的值。往
1对于三相等慢率被动的负荷可以任意选取一相测盘,2设让所取的短路容革可以用投产时系统大短路容盘乘系数0.75.2对于随机性不规则的电压波动,电压变动实测值应不少于50个,以95%概率大值作为判断依据。短时间闪变值测量周期取为10 min,每天(24 h)不得超标7次(70 min):长时间闪变值测量周期取为2h,每次均不得超标。
往,95%概率大慎指的是将实测值按由大到小的次序排列,舍弃前面 5%的大值,取剩余的实测值中最大值。6闪变的叠加和传递
根据新用户投人前后公共连接点实测的闪变值,可以利用以下有关计算公式,推算出新用户实际上产生的闪变值。
6-1 n个波动负荷各自引起的闪变及背景闪变在同一节点上相互叠加,其短时问闪变值可按下式计算:
Put = (Pu)\ +(Pst2)\ + +(Pl)式中:m值取决于主要闪变源的性质及其工况的重叠可能性:m=1用于波动负荷引起电压变动同时发生重叠率很高的状况;m一2用于随机波动负荷引起电压变动同时发生的状况(例如熔化期重叠的电弧炉)讯=3用于波动负荷引起的电压变动同时发生的可能性很小的状况(比较带用);m=4仅用于熔化期不重登的电弧炉所引起的电压变动合成。6.2如图1所示,电力系统不同母线结点上闪变的传递可按下式简化计算:PAA
图1闪变传递计算示意
Puta =TBA PaB
式中:Tea—SmA-S
为结点B短时间闪变值传递到结点A的传递系数:PA结点 B短时间闪变值传递到结点 A,在结点A引起的短时间闪变值P结点 B 上的短时间闪变值;
SA结点B短路时结点 A 流向结点 B的短路容量:SuA结点A的短路容量;
--(4 )
GB12326—2000
SrB结点 A短路时结点 B流向结点 A 的短路穿量:图 1 中 L为波动负荷。
当 S' yA - 0,而 S,eA -S' w时,PutA =- PtB6. 3 某台设备在系统短路容量为 Sx时 P,n已知,当短路容量变为 S,时 P1按下式计算 Saro
P.u = Puo S
公式(4)、(5)、(6)原则上也可用于长时间闪变值的相关计算。电压变动的计算
对于平衡的三相负荷
式中,AS,为负荷容量的变化量;S.为考察点(一般为 PCC)的短路奔量。As.
当已知二负荷的有功功率和无功功率的变化量分别为△P,和AQ,时,则用下式计算:RAP+XQ×100%
式中:R,i分别为电网阻抗的电阻和电抗分量。在高压电网中,一般 X,》R,则
×100%
式(7)~(9)中,S,,△P和Q要根据负荷变化性质确定。对于由某一相间单相负荷变化引起的电压变动da
8 闪变的评估
V3AS×100%
不同类型的电压波动,P.有不同的评估方法,如表6所列。表 6 闪变的评估方法
电压变动类型
各种类型电压波动(在线评估)[,(t)已确定的所有电压波动
周期性等间隔电压波动(图 2,图 3)电压变动间隔时同大于】s的电压波动(图1,图5,图6)8. 1闪变仪
直接测量
仿,真法,直接测量
利用 Pa—1 曲线
P.评估方法
闪变时间分折法.仿真法,直接测函(6)
...(10)
各种类型的电压波动均可以用符合IEC 61000-4-15的闪变仪直接测量来评估,这是闪变量值判定的基方法。
8.2仿真法
当负荷变动特性和 PCC 的系统阻抗已知时,可以计算负荷引起的电压变动d(r),然后由闪变仪的模拟程序求出相应的 P。本法需要专门的程序,其精度主要取于负荷特性的数学模型。8.3用 P.=1 曲线分析
对丁周期性等间隔矩形波(耽阶跃波)、止弦波和三角被的电压变动,当已知电压变动d和频度rGB12326—2000
时,可以利用图2或表7)由查出对应于P一1的电压变动m,则Pa=F.d
++p ptte+r( 11 )
式中:F为被形系数。对于矩形波(或阶联波)F=1,对于正弦波和三角波查图3。10
图2周期性矩形(或阶跃)电压变动的单位闪变(P=1)曲线10
周期性矩形(或阶跃)电压变动的单位闪变(P.=1)曲线对应数据d.%
r,min-i
r,tmn1
ramin-1
345678910
正弦滋。
三角被
345678910
图3周期性正弦波和三角波电压波动的波形系数1.9
B-4闪变时间分析法
GB12326—2000
在求P(或P,)时分别选取产生闪变较严重的10m1n(或2h)时段的d(t)作分析,把各种变动波形利用波形系数等值为阶联变动波形,求出闪变时间t(s)来评估P.(或Ph)。对每个被形
tr=2. 3 × (Fdux)a
...(12)
式中:F为波形系数。对于阶联波F一1;对于双阶梯波、斜坡被、三角波和矩形波,查图4.图5;对于直接起动的电动机,F1;对于采联缓冲措施的电动机,查图6。0. 8
0.64mr/2 t.
双阶梯波和斜坡波电压变动的波形系数T/2.T/2
三角波和矩形波电压变动的波形系数1g
GB123262000
后沿时间
前沿时间免费标准bzxz.net
具有不同前后沿的电动机起动电压波形系数图
将规定时段(10 min,2 h)内d(t)的t总和求出,则Pat= N 500
Pie= N120 × 60
(13)
闪变时间分析法一般用于电压变动间隔大于1 s且电压变动波形为上列几种的组合,所求的PrP值和直接测量结果相比,误差在士10%以内。电压变动间隔小于1,不推荐用此法。8.3、8.4中方法仅适用于特定的电压波动场合。一些典型的实例分析见附录C。GB12326—2000
附录A
(标准的附录)
闪变的测量和计算式
根据TEC61000-4-15制造的IEC闪变仪是目前国际上通用的测量闪变的仪器,有模拟式的也有部分或全部是数字式两种结构,其简化原理框图如图A1所示。枢1
摘人适配
自赖信号
解谢器
加权战被
一阶舒通胡波
图 AIIEC 闪变仪模型的简化框图s()
统计评价
框1为输入级,它除了用来实现把不同等级的电源电压(从电压互感器或输入变压器二次侧取得)降到适用于仪器内部电路电压值的功能外,还产生标准的调制波、用于仪器的自检。框2.3、4综合模拟了灯-眼-脑环节对电压波动的反应。其中框2对电压波动分量进行解调,获得与电压变动成线性关系的电压,推3的带通加权滤波器反映了人对60W230V钨丝灯在不同频率的电压波动下照度变化的敏感程度,通频带为0.05Hz~35Hz;框4包含一个平方器和时间常数为300ms的低通滤波器,用来模拟灯-眼-脑环节对灯光照度变化的暂态非线性响应和记忆效应。框4的输出S(t)反映了人的视览对电压波动的避时闪变感觉水平,如图A28)所示,可对S(t)作不同的处理来反映电网电压引起的闪变情况。进入框5的S(t)值是用积累概率函数CPF的方法进行分析。在观察期内(10min),对上述信号进行统5
计。图中为了简明起见,分为10级。以第7级为例·由图A2a),T,=,Zt,,用 CPF,代表S 值处于 7级
(或1.2~1.4p.u.)的时间T,占总观察时间的百分数,相继求出CPF.(i=1~10)即可作出图A2b)CPF曲线。实际仪器分级数应不小于64级。2.0m
图A2由S(t)曲线作出的CPF曲线示例d
GB12326—2000
23456月910s)
00.20.40.60.81.01.21.11.61.82.0s(p.u.)
图A2(完)
由 CPF 曲线获得短时间闪变值:P = 0. 031 4P, 1 + 0. 052 5P1 + 0. 065 7P, + 0. 28Pr. + 0. 08P.n*..(Al1)
式中:P。1、P1.P:、P1.、Ps.分别为 CPF曲线上等于0. 1%、1%、3%、10%和 50%时间的 S(t)值。长时间闪变值Pt由测量时间段内包含的短时间闪变值计算获得:Pl
式中:n为长时间闪变值测量时间内所包含的短时间闪变值个数。P,和 Pi由图 A1 框 5 输出。
附录B
(标准的附录)
高压(HV)总供电容量 Sirv的估算方法-(A2)
当 S, 用户接于某单台变压器二次侧母线(PCC)上时,StHr即为主变压器的供电容量。对于某些用户(特别是220kV级用户),其PCC可能有多个供电源,SiHv可以用下列方法估算:第一种近似估算:在PCC最大需求日(或计及将来发展),所供给的HV用户总容量为ZSay,就取为StHV。但当PCC附近有较大的波动负荷时,则按第二种近似估算。第二种近似估算:如图B1所示。设1为所考虑的结点,2、3为其附近有较人波动负荷的结点。先按第一种估算法,求出SHV1、StHVz、S.HV3。然后求出工频下传递系数K,-1、Ks-1。“传递系数\K,-,是结点注入1P.u.电压时在1结点引起的电压。K,,计算一般需要计算机程序,但6.2条给出裔化的算法,在许多情况下能很快求出近似的结果。由此得:SHv=StrVI十K2-1XSHV2十K,-XSuva。
小提示:此标准内容仅展示完整标准里的部分截取内容,若需要完整标准请到上方自行免费下载完整标准文档。