title>Upper confidence limits of coefficient of variation for normal distribution - GB/T 11791-1989 - Chinese standardNet - bzxz.net
Home > GB > Upper confidence limits of coefficient of variation for normal distribution
Upper confidence limits of coefficient of variation for normal distribution

Basic Information

Standard ID: GB/T 11791-1989

Standard Name:Upper confidence limits of coefficient of variation for normal distribution

Chinese Name: 正态分布变差系数置信上限

Standard category:National Standard (GB)

state:Abolished

Date of Release1989-11-22

Date of Implementation:1990-07-01

Date of Expiration:2010-02-01

standard classification number

Standard ICS number:Sociology, Services, Organization and management of companies (enterprises), Administration, Transport>>Quality>>03.120.30 Application of statistical methods

Standard Classification Number:Comprehensive>>Basic Subjects>>A41 Mathematics

associated standards

alternative situation:Replaces QJ 1355-1988

Publication information

publishing house:China Standards Press

Publication date:1990-07-01

other information

Release date:1989-11-22

Review date:2004-10-14

Drafting unit:National Statistical Methods and Standards Technical Committee

Focal point unit:National Technical Committee for Application of Statistical Methods and Standardization

Publishing department:State Bureau of Technical Supervision

competent authority:National Standardization Administration

Introduction to standards:

This standard specifies the method for determining the upper confidence limit of the coefficient of variation according to the confidence level given by the sample when the product characteristic value χ follows the normal distribution, the mean (μ>0) and the standard deviation δ are unknown. This standard is widely applicable to the estimation of the coefficient of variation of structures, materials, textiles, etc. GB/T 11791-1989 Upper confidence limit of the coefficient of variation of normal distribution GB/T11791-1989 Standard download decompression password: www.bzxz.net
This standard specifies the method for determining the upper confidence limit of the coefficient of variation according to the confidence level given by the sample when the product characteristic value χ follows the normal distribution, the mean (μ>0) and the standard deviation δ are unknown. This standard is widely applicable to the estimation of the coefficient of variation of structures, materials, textiles, etc.


Some standard content:

National Standard of the People's Republic of China
Upper confidence limits of coefficientof variation for normal distribution
Upper confidence limits of coefficientof variation for normal distribution1 Subject content and scope of application
GB/T 11791---89
This standard specifies the method for determining the upper confidence limit of coefficient of variation based on the sample and a given confidence level when the product characteristic values ​​obey the normal distribution, the mean (u0) and the standard deviation (u1) are unknown. This standard is widely applicable to the estimation of coefficient of variation of structures, materials, textiles, etc. 2 Referenced standards
GB3358 Statistical terms and symbols
GB318 Basic terms and definitions of reliability 3 Symbols
Sample size
Characteristic value of the t-th individual in the sample
Sample mean
Sample variance
Sample coefficient of variation
Coefficient of variation of the population
Population Reciprocal of the coefficient of variation
Confidence lower limit of C
Distribution with (n-1) degrees of freedom
Confidence level of -1-α quantile of ×2 distribution with (n-1) degrees of freedom
1-α quantile of non-central "t" distribution with (n-1) degrees of freedom and non-central parameter
Confidence upper limit of the population coefficient of variation
Estimation formula of the coefficient of variation
Assume that the sample,…, comes from a normal population N (,), approved by the State Administration of Technical Supervision on November 22, 1989 326
Cya/μ
x2(n-1)
xi-,(n-1)
tj-n(n- l;d)
1990·07-01 implementation
GB/T 11791- 89
(—)2
When the confidence level is 1-α, u>0, the classical exact upper confidence limit Cvu of the overall coefficient of variation is determined by the following formula; [ti--(nl;Vn(C-))VnK
Wu Zhong: K1/s=1/cvs.
4.1 Lookup table method
Step 1: Calculate nk
Step 2: According to the √n value, look up the tt (n;o) table in Appendix A (Supplement) of this standard and use linear interpolation to calculate the value, that is, ~/n (C\) Step 3: Calculate
Cvu- 1/(Cv)L
4.2 Calculation method
Step 1: Calculate √ element K
Step 2: From the /nK value, calculate the value according to the calculation procedure of the non-central "t\ distribution (1-α) quantile provided in Appendix B (reference) of this standard, that is, the (C\) value.
Step 3: Calculate
Cvu = 1/(Cv)i
5 Approximate formula
When C<0.30 and n=6, Cv is determined by the following approximate formula: Ciyu=
6 Example
[ x-(n -- 1)(1 + Cs . (n= 1)- 1) C&s
. (2) A batch of carbon epoxy shells, 9 pieces were randomly selected for strength test, and the measured damage values ​​were (unit: t): 7.92.7.25, 7, 8.58, 7, 6.67, 6.75, 6.87, 6.92. Calculate the upper confidence limit of the coefficient of variation of the strength of this batch of shells when the confidence level is 0.90. Calculation:
α-7. 217 8 (t)
s== 0. 629 5 (t)
(i) Approximate method
. (8)-3.49, from (2) we get:
Cvu =: 0. 131 6
(ii)Exact method
From √nK34.3978, check the table in Appendix A and use linear interpolation: So we have
yn (Cv)r = 22. 640 9
Gvu = 1/(Cv*)
-The parameter range and table interval of this table are:
11791-89
Quantile table of non-central “t\ distribution
(Supplement)
1α 0.70,0. 80,0. 90,0. 95,0. 99n=2(1)50,60,70,80
GB/T 11791--89
0821829
0816189
0982888
082798
8898989
01809889
02288269
021002
16 0880
089612
00620618
008 228 | | tt | | 010992 | |tt||016129
016869
0282202|| tt | t||0266292
0880289
r086892|| tt | 2896
00234502
GB/T11791-89|| tt||0880899
0862899
06266699
0086802
0086829
0078009
028889
07960899||tt| |029989
001889
0816009
0 196609 | | tt | |086665
091869
08890992||tt| |020919
818689
80333453339
GB/T11791-~
0096692
009988
009008
005298
009629
008 691
000222
008282
0099 9282 | | tt | | 000298 | t||09196866
000829001
0000980.0m
0002961
000682
0008960
09989168
626086
0786628
08969606
02990026| |tt||03882686
002890101
00 9880100
000289801
982182
0188982
0296262
082891
09616128
998278
068228| |tt||069821
009822
00817 281
008698
0282867
C169196
00080262
0009886
008686
002161021
008900| |tt||006918
0016661
1002982
00601881
00892881
00091061
0066806
00029111
0068006
00680861
000616611|| tt||0090280
C08166801
00069880
086680
0089026
0088601
0088100
008101
000920-11
0962926
012826
09192626
02982626||tt| |09968086
02887186
06960286
0680118
03692286
0091886
09201686
00960066
399666
08210966
06898898
09906028
061118
09688728
122828
06266088
09699188
06920188
892698|| tt||03966988
08110888
08991 688
02628068
01881292
09829022
06821822
0282692
111622
099182
000192| |tt||0249982
33553880
GB/T 11791-89
080661
000816261
009896861
00911866
0021600
088602
0019899-81||tt ||0016281
002888881
0062266
00822668
001080%
0089600
000281
008198612||tt| |0097286
022188
G0f00G921
0028688
0091196
00206108
0002820
0089969
00059991
00000999
0028829| |tt||002982
0029922
02'0=0-1
00628882
ooftts
009859g
000169||tt ||0002081
0089158
009212 9
0060890
0069928
002896
000079
0009806
0009822
1179189
0092882| |tt||000828
0098968
009878961
000018
009061-
008628
000088
00028888|| tt||000916181
008296691
00 02869
002250
0020012
002191-2
0016812
008632
082828
019868
000009
0000980
0080960-91
00619019
0089191
006881
002681
000821
00969291
028128
089288
02:001
006198
008806
0099806
0019180
0062891
0068513
0021092
001669| |tt||0029682
0086018
0096298
088816
0066862
0069900t
0009290
0098620||tt ||8003234638304
GB/T 11791--
009879
026689
00896992
090029
008909292
0069896
060222
000900622
000016
006262008
06299878
006215
008820 8
000880
009909692
009999
000618
0089288
0828012
009062092
00920199| |tt||001896
000829
001188898
0089610
00085902||tt ||0028891
0090682
0068609
0060218
0083680
009289
0060908
0099228
02°0-{
002281
002092612
008281
002182
001888922
0020822
0069222
002022
000802
002218
0008626
009962
0022898|| tt||009809912
0092996
002629
000000
000992818
GB/T 11791-89
869892
002629
0000992
021189
0098662
230898189
009200652
029669
006199092
009612
000000
00902892
0000022
0059988
0099986|| tt||0088820
0092890
002809
00818292
000999
000282
002288
008882||tt| |00982682
000020
00268622
001867
00029892
0002092
0028892
00282822|| tt||00099622
000988
0022982
0096268
0218982
028282
000698
000200||tt| |002912
008606
000282
0088182
000898
0069000
0001811
0009908
0 22998
0089168
008202
00020902
006663
021902
008002
00219102
001129| |tt||0060202
002189202
80832343333804
GB/T11791-89
00088927
061282
00 686828
009996
0008212
008982
00688628
0088888
0066021
00288928
0029288| |tt||00900818
001802818
006202
0009669
06900828
00681678
008822|| tt||009128
061285-0
008860018
006828
00216818
0000980
0026292
00969288|| tt||000800
008102828
00t80990m
00901962
00908962
009890662
00286662|| tt||0000000
001860218
000020
0021808
000088
0081888
008029
002668||tt| |0066208
0080888
0080186
002680
009096162
00919262
008296
00020086 2
00208000
00068800
006989818
0000160
00926691
00220281
0088896
000226| |tt||008298
000606
0088669-62
0028969
0001088
0091108
6790223456211791-89
869892
002629
0000992
021189
0098662
230898189
009200652
029669
006199092
009612
000000
00902892
0000022
0059988
0099986|| tt||0088820
0092890
002809
00818292
000999
000282
002288
008882||tt| |00982682
000020
00268622
001867
00029892
0002092
0028892
00282822|| tt||00099622
000988
0022982
0096268
0218982
028282
000698
000200||tt| |002912
008606
000282
0088182
000898
0069000
0001811
0009908
0 22998
0089168
008202
00020902
006663
021902
008002
00219102
001129| |tt||0060202
002189202
80832343333804
GB/T11791-89
00088927
061282
00 686828
009996
0008212
008982
00688628
0088888
0066021
00288928
0029288| |tt||00900818
001802818
006202
0009669
06900828
00681678
008822|| tt||009128
061285-0
008860018
006828
00216818
0000980
0026292
00969288|| tt||000800
008102828
00t80990m
00901962
00908962
009890662
00286662|| tt||0000000
001860218
000020
0021808
000088
0081888
008029
002668||tt| |0066208
0080888
0080186
002680
009096162
00919262
008296
00020086 2
00208000
00068800
006989818
0000160
00926691
00220281
0088896
000226| |tt||008298
000606
0088669-62
0028969
0001088
0091108
6790223456211791-89
869892
002629
0000992
021189
0098662
230898189
009200652wwW.bzxz.Net
029669
006199092
009612
000000
00902892
0000022
0059988
0099986|| tt||0088820
0092890
002809
00818292
000999
000282
002288
008882||tt| |00982682
000020
00268622
001867
00029892
0002092
0028892
00282822|| tt||00099622
000988
0022982
0096268
0218982
028282
000698
000200||tt| |002912
008606
000282
0088182
000898
0069000
0001811
0009908
0 22998
0089168
008202
00020902
006663
021902
008002
00219102
001129| |tt||0060202
002189202
80832343333804
GB/T11791-89
00088927
061282
00 686828
009996
0008212
008982
00688628
0088888
0066021
00288928
0029288| |tt||00900818
001802818
006202
0009669
06900828
00681678
008822|| tt||009128
061285-0
008860018
006828
00216818
0000980
0026292
00969288|| tt||000800
008102828
00t80990m
00901962
00908962
009890662
00286662|| tt||0000000
001860218
000020
0021808
000088
0081888
008029
002668||tt| |0066208
0080888
0080186
002680
009096162
00919262
008296
00020086 2
00208000
00068800
006989818
0000160
00926691
00220281
0088896
000226| |tt||008298
000606
0088669-62
0028969
0001088
0091108
67902234562
Tip: This standard content only shows part of the intercepted content of the complete standard. If you need the complete standard, please go to the top to download the complete standard document for free.